A short introduction to Babai's quasipolinomial graph isomorphism testing

Ilia Ponomarenko

St.Petersburg Department of V.A.Steklov Institute of Mathematics of the Russian Academy of Sciences

The International Conference and PhD-Master Summer School on "Graphs and Groups, Spectra and Symmetries" (G2S2)

Novosibirsk, Russia, August 15-28, 2016.

The main statement

The printed version: arXiv:1512.03547v2
The video lectures: at Babai's home page.

The main statement

The printed version: arXiv:1512.03547v2
The video lectures: at Babai's home page.

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time $\exp \left((\log n)^{O(1)}\right)$: Graph Isomorphism, String Isomorphism, Coset Intersection.

The main statement

The printed version: arXiv:1512.03547v2
The video lectures: at Babai's home page.

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time $\exp \left((\log n)^{O(1)}\right)$: Graph Isomorphism, String Isomorphism, Coset Intersection.

Graph Isomorphism. Known: $\exp (O(\sqrt{n \log n}))$ (Kantor-Luks-Babai, 1983).

The main statement

The printed version: arXiv:1512.03547v2
The video lectures: at Babai's home page.

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time $\exp \left((\log n)^{O(1)}\right)$: Graph Isomorphism, String Isomorphism, Coset Intersection.

Graph Isomorphism. Known: $\exp (O(\sqrt{n \log n}))$ (Kantor-Luks-Babai, 1983). String Isomorphism. For strings s, s^{\prime} and a group G, find Iso $_{G}\left(s, s^{\prime}\right)$, where $s, s^{\prime}: \Omega \rightarrow \Sigma$ are strings over the alphabet Σ and $\operatorname{lso}_{G}\left(s, s^{\prime}\right)=\left\{f \in G: s^{f}=s^{\prime}\right\}$.

The main statement

The printed version: arXiv:1512.03547v2
The video lectures: at Babai's home page.

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time $\exp \left((\log n)^{O(1)}\right)$: Graph Isomorphism, String Isomorphism, Coset Intersection.

Graph Isomorphism. Known: $\exp (O(\sqrt{n \log n}))$ (Kantor-Luks-Babai, 1983).
String Isomorphism. For strings s, s^{\prime} and a group G, find Iso $_{G}\left(s, s^{\prime}\right)$, where $s, s^{\prime}: \Omega \rightarrow \Sigma$ are strings over the alphabet Σ and $\operatorname{lso}_{G}\left(s, s^{\prime}\right)=\left\{f \in G: s^{f}=s^{\prime}\right\}$.
Coset intersection. For $G, G^{\prime} \leq \operatorname{Sym}(\Omega)$ and $f, f^{\prime} \in \operatorname{Sym}(\Omega)$, find $G f \cap G^{\prime} f^{\prime}$.

The sense of "quasipolynomial"

- The algorithm splits the problem of size n into $q(n)$ subproblems of size $c n$, where $0<c<1$.

The sense of "quasipolynomial"

- The algorithm splits the problem of size n into $q(n)$ subproblems of size $c n$, where $0<c<1$.
- So for the computational complexity $F(n)$ of the algorithm, $F(n) \leq q(n) F(c n)$.

The sense of "quasipolynomial"

- The algorithm splits the problem of size n into $q(n)$ subproblems of size $c n$, where $0<c<1$.
- So for the computational complexity $F(n)$ of the algorithm, $F(n) \leq q(n) F(c n)$.
- Thus, $F(n) \leq q(n)^{O(\log n)}$.

The sense of "quasipolynomial"

- The algorithm splits the problem of size n into $q(n)$ subproblems of size $c n$, where $0<c<1$.
- So for the computational complexity $F(n)$ of the algorithm, $F(n) \leq q(n) F(c n)$.
- Thus, $F(n) \leq q(n)^{O(\log n)}$.

To get quasipolynomial bound, the function $q(n)$ must be quasipolunomially bounded.

From Graph Isomorphism to String Isomorphism

- Let Γ, Γ^{\prime} be graphs with vertices $\{1, \ldots, n\}$,

From Graph Isomorphism to String Isomorphism

- Let Γ, Γ^{\prime} be graphs with vertices $\{1, \ldots, n\}$,
- set s, s^{\prime} to be the strings on $\Omega=\{1, \ldots, n\}^{2}$ over the alphabet $\Sigma=\{0,1\}$ obtained from the adjacency matrices of Γ and Γ^{\prime}, respectively,

From Graph Isomorphism to String Isomorphism

- Let Γ, Γ^{\prime} be graphs with vertices $\{1, \ldots, n\}$,
- set s, s^{\prime} to be the strings on $\Omega=\{1, \ldots, n\}^{2}$ over the alphabet $\Sigma=\{0,1\}$ obtained from the adjacency matrices of Γ and Γ^{\prime}, respectively,
- set G to be the permutation group induced by the action of $\operatorname{Sym}(n)$ on pairs, $G \leq \operatorname{Sym}(\Omega)$.

From Graph Isomorphism to String Isomorphism

- Let Γ, Γ^{\prime} be graphs with vertices $\{1, \ldots, n\}$,
- set s, s^{\prime} to be the strings on $\Omega=\{1, \ldots, n\}^{2}$ over the alphabet $\Sigma=\{0,1\}$ obtained from the adjacency matrices of Γ and Γ^{\prime}, respectively,
- set G to be the permutation group induced by the action of $\operatorname{Sym}(n)$ on pairs, $G \leq \operatorname{Sym}(\Omega)$.
- Now $\Gamma \cong \Gamma^{\prime}$ iff $\operatorname{lso}_{G}\left(s, s^{\prime}\right) \neq \varnothing$.

The Luks Algorithm: preliminaries

For $K \subset \operatorname{Sym}(\Omega)$ and $\Delta \subset \Omega$, set

$$
\operatorname{lso}_{K}^{\Delta}\left(s, s^{\prime}\right)=\left\{k \in K: s(\alpha)=s^{\prime}\left(\alpha^{k}\right) \text { for all } \alpha \in \Delta\right\}
$$

The Luks Algorithm: preliminaries

For $K \subset \operatorname{Sym}(\Omega)$ and $\Delta \subset \Omega$, set

$$
\operatorname{lso}_{K}^{\Delta}\left(s, s^{\prime}\right)=\left\{k \in K: s(\alpha)=s^{\prime}\left(\alpha^{k}\right) \text { for all } \alpha \in \Delta\right\}
$$

Remarks

- The String Isomorphism is to find $\mathrm{Iso}_{K}^{\Delta}\left(s, s^{\prime}\right)$ with $K=G$ and $\Delta=\Omega$.
- In what follows, K is a right coset of G or empty, and Δ is G-invariant.

The Luks Algorithm: preliminaries

For $K \subset \operatorname{Sym}(\Omega)$ and $\Delta \subset \Omega$, set

$$
\operatorname{lso}_{K}^{\Delta}\left(s, s^{\prime}\right)=\left\{k \in K: s(\alpha)=s^{\prime}\left(\alpha^{k}\right) \text { for all } \alpha \in \Delta\right\}
$$

Remarks

- The String Isomorphism is to find $\mathrm{Iso}_{K}^{\Delta}\left(s, s^{\prime}\right)$ with $K=G$ and $\Delta=\Omega$.
- In what follows, K is a right coset of G or empty, and Δ is G-invariant.

Proposition

Let $K=G f$, where $f \in \operatorname{Sym}(\Omega)$ and $\Delta^{G}=\Delta$. Then

The Luks Algorithm: preliminaries

For $K \subset \operatorname{Sym}(\Omega)$ and $\Delta \subset \Omega$, set

$$
\operatorname{lso}_{K}^{\Delta}\left(s, s^{\prime}\right)=\left\{k \in K: s(\alpha)=s^{\prime}\left(\alpha^{k}\right) \text { for all } \alpha \in \Delta\right\}
$$

Remarks

- The String Isomorphism is to find $\mathrm{Iso}_{K}^{\Delta}\left(s, s^{\prime}\right)$ with $K=G$ and $\Delta=\Omega$.
- In what follows, K is a right coset of G or empty, and Δ is G-invariant.

Proposition

Let $K=G f$, where $f \in \operatorname{Sym}(\Omega)$ and $\Delta^{G}=\Delta$. Then

- $\operatorname{Aut}_{G}^{\Delta}(s)$ is a subgroup of G,
- $\operatorname{Iso}_{G f}^{\Delta}\left(s, s^{\prime}\right)$ is either empty or a right coset of $\operatorname{Aut}_{G}^{\Delta}(s)$.

The Luks Algorithm: intransitive case

Input: strings s, s^{\prime} on Ω, group $G \leq \operatorname{Sym}(\Omega)$, a G-invariant set $\Delta \subset \Omega$, and $f \in \operatorname{Sym}(\Omega)$.

The Luks Algorithm: intransitive case

Input: strings s, s^{\prime} on Ω, group $G \leq \operatorname{Sym}(\Omega)$, a G-invariant set $\Delta \subset \Omega$, and $f \in \operatorname{Sym}(\Omega)$.
Output: $\operatorname{lso}_{G f}^{\Delta}\left(s, s^{\prime}\right)$.

The Luks Algorithm: intransitive case

Input: strings s, s^{\prime} on Ω, group $G \leq \operatorname{Sym}(\Omega)$, a G-invariant set $\Delta \subset \Omega$, and $f \in \operatorname{Sym}(\Omega)$.
Output: $\operatorname{Iso}_{G f}^{\Delta}\left(s, s^{\prime}\right)$.
Step 1 (G is intransitive on Δ). Let $\Delta=\Delta_{1} \cup \Delta_{2}$, where Δ_{i} is G-invariant nonempty set. Then

$$
\operatorname{lso}_{G f}^{\Delta_{1} \cup \Delta_{2}}\left(s, s^{\prime}\right)=\operatorname{Iso}_{G_{1} f_{1}}^{\Delta_{2}}\left(s, s^{\prime}\right)
$$

where $G_{1} f_{1}=\operatorname{Iso_{Gf}^{\Delta _{1}}(s,s^{\prime }).}$

The Luks Algorithm: intransitive case

Input: strings s, s^{\prime} on Ω, group $G \leq \operatorname{Sym}(\Omega)$, a G-invariant set $\Delta \subset \Omega$, and $f \in \operatorname{Sym}(\Omega)$.
Output: $\mathrm{Iso}_{G f}^{\Delta}\left(s, s^{\prime}\right)$.
Step 1 (G is intransitive on Δ). Let $\Delta=\Delta_{1} \cup \Delta_{2}$, where Δ_{i} is G-invariant nonempty set. Then

$$
\operatorname{Iso}_{G f}^{\Delta_{1} \cup \Delta_{2}}\left(s, s^{\prime}\right)=\operatorname{Iso}_{G_{1} f_{1}}^{\Delta_{2}}\left(s, s^{\prime}\right)
$$

where $G_{1} f_{1}=\operatorname{Iso}_{G f}^{\Delta_{1}}\left(s, s^{\prime}\right)$.
The time bound is $F(n) \leq F\left(n_{1}\right)+F\left(n_{2}\right)$, where $n=n_{1}+n_{2}$ and $n_{i}=\left|\Delta_{i}\right|$.

The Luks Algorithm: transitive case

Step 2 (G is "imprimitive" on Δ). Let $\Delta=\Delta_{1} \cup \cdots \cup \Delta_{m}$ is a G-invariant partition with the maximum possible $\left|\Delta_{1}\right|<|\Omega|$ (it is possible that $\left|\Delta_{1}\right|=1$ and G is primitive).

The Luks Algorithm: transitive case

Step 2 (G is "imprimitive" on Δ). Let $\Delta=\Delta_{1} \cup \cdots \cup \Delta_{m}$ is a G-invariant partition with the maximum possible $\left|\Delta_{1}\right|<|\Omega|$ (it is possible that $\left|\Delta_{1}\right|=1$ and G is primitive).
Set $\psi: G \rightarrow \operatorname{Sym}(m)$ to be the induced homomorphism.

$$
N=\operatorname{ker}(\psi), \quad \bar{G}=\operatorname{im}(\psi), \quad k=|\bar{G}| .
$$

Then

$$
\operatorname{Iso}_{G f}^{\Delta}\left(s, s^{\prime}\right)=\bigcup_{i=1}^{k} \operatorname{Iso}_{N g_{i} f}^{\Delta}\left(s, s^{\prime}\right)
$$

where $\left\{g_{1}, \ldots, g_{k}\right\}$ is a full set of distinct representatives of the family $\left\{\psi^{-1}(\bar{g}): \bar{g} \in \bar{G}\right\}$. Here,
$\operatorname{Orb}(N, \Delta)=\left\{\Delta_{1} \ldots, \Delta_{m}\right\} \quad$ and $\quad\left|\Delta_{i}\right|=n / m$.

The Luks Algorithm: transitive case

Step 2 (G is "imprimitive" on Δ). Let $\Delta=\Delta_{1} \cup \cdots \cup \Delta_{m}$ is a G-invariant partition with the maximum possible $\left|\Delta_{1}\right|<|\Omega|$ (it is possible that $\left|\Delta_{1}\right|=1$ and G is primitive).
Set $\psi: G \rightarrow \operatorname{Sym}(m)$ to be the induced homomorphism.

$$
N=\operatorname{ker}(\psi), \quad \bar{G}=\operatorname{im}(\psi), \quad k=|\bar{G}| .
$$

Then

$$
\operatorname{Iso}_{G f}^{\Delta}\left(s, s^{\prime}\right)=\bigcup_{i=1}^{k} \operatorname{Iso}_{N g_{i} f}^{\Delta}\left(s, s^{\prime}\right)
$$

where $\left\{g_{1}, \ldots, g_{k}\right\}$ is a full set of distinct representatives of the family $\left\{\psi^{-1}(\bar{g}): \bar{g} \in \bar{G}\right\}$. Here,

$$
\operatorname{Orb}(N, \Delta)=\left\{\Delta_{1} \ldots, \Delta_{m}\right\} \quad \text { and } \quad\left|\Delta_{i}\right|=n / m
$$

Thus, the time bound here is $F(n) \leq m k F(n / m)$.

The Luks Algorithm: remarks

- If the group G is solvable, then $k=m^{O(1)}$ and $F(n) \leq n^{O(1)}$.

The Luks Algorithm: remarks

- If the group G is solvable, then $k=m^{O(1)}$ and $F(n) \leq n^{O(1)}$.
- If all non-abelian composition factors of G are bounded by a constant, say d, then $k=m^{g(d)}$ and $F(n) \leq n^{g(d)}$, where g is a function.

The Luks Algorithm: remarks

- If the group G is solvable, then $k=m^{O(1)}$ and $F(n) \leq n^{O(1)}$.
- If all non-abelian composition factors of G are bounded by a constant, say d, then $k=m^{g(d)}$ and $F(n) \leq n^{g(d)}$, where g is a function.
- If $k=|\bar{G}|=n^{O(\log n)}$ for all primitive groups \bar{G} occuring in the Luks algorithm, then

$$
F(n) \leq n^{(\log n)^{O(1)}}
$$

The Luks Algorithm: remarks

- If the group G is solvable, then $k=m^{O(1)}$ and

$$
F(n) \leq n^{O}(1)
$$

- If all non-abelian composition factors of G are bounded by a constant, say d, then $k=m^{g(d)}$ and $F(n) \leq n^{g(d)}$, where g is a function.
- If $k=|\bar{G}|=n^{O(\log n)}$ for all primitive groups \bar{G} occuring in the Luks algorithm, then

$$
F(n) \leq n^{(\log n)^{O(1)}}
$$

In all the above cases the Luks algorithm is quasipolynomial.

An obstacle to the Luks approach

Let $A_{m}^{(t)}$ and $S_{m}^{(t)}$ be the actions of $\operatorname{Alt}(m)$ and $\operatorname{Sym}(m)$ on $\binom{m}{t}$.

An obstacle to the Luks approach

Let $A_{m}^{(t)}$ and $S_{m}^{(t)}$ be the actions of $\operatorname{Alt}(m)$ and $\operatorname{Sym}(m)$ on $\binom{m}{t}$.

Definition

The Cameron group $G \leq \operatorname{Sym}(n)$ with parameters $s, t \geq 1$ and $m \geq \max \{2 t, 5\}$ is defined by the following conditions:

$$
n=\binom{m}{t}^{s} \quad \text { and } \quad\left(A_{m}^{\{t\}}\right)^{s} \leq G \leq S_{m}^{\{t\}} \succ \operatorname{Sym}(s)
$$

and the action of G on the factors of $\operatorname{Soc}(G)$ is transitive.

An obstacle to the Luks approach

Let $A_{m}^{(t)}$ and $S_{m}^{(t)}$ be the actions of $\operatorname{Alt}(m)$ and $\operatorname{Sym}(m)$ on $\binom{m}{t}$.

Definition

The Cameron group $G \leq \operatorname{Sym}(n)$ with parameters $s, t \geq 1$ and $m \geq \max \{2 t, 5\}$ is defined by the following conditions:

$$
n=\binom{m}{t}^{s} \quad \text { and } \quad\left(A_{m}^{\{t\}}\right)^{s} \leq G \leq S_{m}^{\{t\}} \succ \operatorname{Sym}(s)
$$

and the action of G on the factors of $\operatorname{Soc}(G)$ is transitive.

Theorem (Cameron, 1981)

For $n \geq 25$, if G is primitive and $|G| \geq n^{1+\log _{2} n}$, then G is a Cameron group.

Using CFSG were removed by Pyber (2016).

Reduction to Johnson scheme

The Luks algorithm stops if $|\bar{G}|$ is larger than quasipolynomial, i.e. if $|\bar{G}|$ is a Cameron group.

Reduction to Johnson scheme

The Luks algorithm stops if $|\bar{G}|$ is larger than quasipolynomial, i.e. if $|\bar{G}|$ is a Cameron group.

In fact, one can continue until \bar{G} becomes a Johnson group, i.e., the Cameron group with $s=1$:

$$
A_{m}^{\{t\}} \leq G \leq S_{m}^{\{t\}}
$$

Reduction to Johnson scheme

The Luks algorithm stops if $|\bar{G}|$ is larger than quasipolynomial, i.e. if $|\bar{G}|$ is a Cameron group.

In fact, one can continue until \bar{G} becomes a Johnson group, i.e., the Cameron group with $s=1$:

$$
A_{m}^{\{t\}} \leq G \leq S_{m}^{\{t\}}
$$

It is well known that

$$
\bigcap_{i=0}^{t} \operatorname{Aut}\left(R_{i}\right)=S_{m}^{\{t\}}
$$

where $t \geq 2, m \geq 2 t+1$, and

$$
R_{i}=\left\{(S, T) \in \Omega^{2}:|S \cap T|=t-i\right\}
$$

with $\Omega=\binom{m}{t}$.

Reduction to Johnson scheme

The Luks algorithm stops if $|\bar{G}|$ is larger than quasipolynomial, i.e. if $|\bar{G}|$ is a Cameron group.

In fact, one can continue until \bar{G} becomes a Johnson group, i.e., the Cameron group with $s=1$:

$$
A_{m}^{\{t\}} \leq G \leq S_{m}^{\{t\}}
$$

It is well known that

$$
\bigcap_{i=0}^{t} \operatorname{Aut}\left(R_{i}\right)=S_{m}^{\{t\}}
$$

where $t \geq 2, m \geq 2 t+1$, and

$$
R_{i}=\left\{(S, T) \in \Omega^{2}:|S \cap T|=t-i\right\}
$$

with $\Omega=\binom{m}{t}$. Here $J(m, t)=\left(\Omega,\left\{R_{i}\right\}\right)$ is the Johnson scheme.

Removing obstackles in Luks's algorithm

Since G is a Cameron group, one can find an explicitly given homomorphism

$$
\varphi: G \rightarrow \operatorname{Alt}(\Gamma),
$$

where Γ is a set of cardinality $m=c \log _{2} n$.

Removing obstackles in Luks's algorithm

Since G is a Cameron group, one can find an explicitly given homomorphism

$$
\varphi: G \rightarrow \operatorname{Alt}(\Gamma)
$$

where Γ is a set of cardinality $m=c \log _{2} n$.

Final steps of Babai's algorithm:

- $\operatorname{Aut}_{G}(s)^{\varphi} \geq \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi} \geq \operatorname{Alt}(\Gamma)$;

Removing obstackles in Luks's algorithm

Since G is a Cameron group, one can find an explicitly given homomorphism

$$
\varphi: G \rightarrow \operatorname{Alt}(\Gamma)
$$

where Γ is a set of cardinality $m=c \log _{2} n$.

Final steps of Babai's algorithm:

- $\operatorname{Aut}_{G}(s)^{\varphi} \geq \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi} \geq \operatorname{Alt}(\Gamma)$; replace G by $\operatorname{ker}(\varphi)$.

Removing obstackles in Luks's algorithm

Since G is a Cameron group, one can find an explicitly given homomorphism

$$
\varphi: G \rightarrow \operatorname{Alt}(\Gamma)
$$

where Γ is a set of cardinality $m=c \log _{2} n$.

Final steps of Babai's algorithm:

- $\operatorname{Aut}_{G}(s)^{\varphi} \geq \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi} \geq \operatorname{Alt}(\Gamma)$; replace G by $\operatorname{ker}(\varphi)$.
- $\operatorname{Aut}_{G}(s)^{\varphi} \geq \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi}<\operatorname{Alt}(\Gamma)$, or vice versa;

Removing obstackles in Luks's algorithm

Since G is a Cameron group, one can find an explicitly given homomorphism

$$
\varphi: G \rightarrow \operatorname{Alt}(\Gamma)
$$

where Γ is a set of cardinality $m=c \log _{2} n$.

Final steps of Babai's algorithm:

- $\operatorname{Aut}_{G}(s)^{\varphi} \geq \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi} \geq \operatorname{Alt}(\Gamma)$; replace G by $\operatorname{ker}(\varphi)$.
- $\operatorname{Aut}_{G}(s)^{\varphi} \geq \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi}<\operatorname{Alt}(\Gamma)$, or vice versa; here $\mathrm{Iso}_{G}\left(s, s^{\prime}\right)=\varnothing$.

Removing obstackles in Luks's algorithm

Since G is a Cameron group, one can find an explicitly given homomorphism

$$
\varphi: G \rightarrow \operatorname{Alt}(\Gamma)
$$

where Γ is a set of cardinality $m=c \log _{2} n$.

Final steps of Babai's algorithm:

- $\operatorname{Aut}_{G}(s)^{\varphi} \geq \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi} \geq \operatorname{Alt}(\Gamma)$; replace G by $\operatorname{ker}(\varphi)$.
- $\operatorname{Aut}_{G}(s)^{\varphi} \geq \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi}<\operatorname{Alt}(\Gamma)$, or vice versa; here $\mathrm{Iso}_{G}\left(s, s^{\prime}\right)=\varnothing$.
- $\operatorname{Aut}_{G}(s)^{\varphi}<\operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi}<\operatorname{Alt}(\Gamma)$;

Removing obstackles in Luks's algorithm

Since G is a Cameron group, one can find an explicitly given homomorphism

$$
\varphi: G \rightarrow \operatorname{Alt}(\Gamma)
$$

where Γ is a set of cardinality $m=c \log _{2} n$.

Final steps of Babai's algorithm:

- $\operatorname{Aut}_{G}(s)^{\varphi} \geq \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi} \geq \operatorname{Alt}(\Gamma)$; replace G by $\operatorname{ker}(\varphi)$.
- $\operatorname{Aut}_{G}(s)^{\varphi} \geq \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi}<\operatorname{Alt}(\Gamma)$, or vice versa; here $\mathrm{Iso}_{G}\left(s, s^{\prime}\right)=\varnothing$.
- $\operatorname{Aut}_{G}(s)^{\varphi}<\operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi}<\operatorname{Alt}(\Gamma)$; replace G by $H^{\varphi^{-1}}$, where $H=\left\langle\operatorname{Aut}_{G}(s)^{\varphi}, \operatorname{Aut}_{G}\left(s^{\prime}\right)^{\varphi}\right\rangle$.

Local certificates

A set $\Delta \subset \Gamma$ is said to be full if

$$
\left(G_{\Delta} \cap \operatorname{Aut}_{G}(s)\right)^{\varphi} \geq \operatorname{Alt}(\Delta)
$$

where $G_{\Delta}=\left(\left(G^{\varphi}\right)_{\{\Delta\}}\right)^{\varphi^{-1}}$.

Local certificates

A set $\Delta \subset \Gamma$ is said to be full if

$$
\left(G_{\Delta} \cap \operatorname{Aut}_{G}(s)\right)^{\varphi} \geq \operatorname{Alt}(\Delta)
$$

where $G_{\Delta}=\left(\left(G^{\varphi}\right)_{\{\Delta\}}\right)^{\varphi^{-1}}$.

1. The non-fullness certificate is a group $M=M(\Delta) \leq \operatorname{Sym}(\Delta)$ such that

$$
M \nsupseteq \operatorname{Alt}(\Delta) \quad \text { and } \quad \operatorname{Aut}_{G}(s)^{\varphi} \leq M .
$$

Local certificates

A set $\Delta \subset \Gamma$ is said to be full if

$$
\left(G_{\Delta} \cap \operatorname{Aut}_{G}(s)\right)^{\varphi} \geq \operatorname{Alt}(\Delta)
$$

where $G_{\Delta}=\left(\left(G^{\varphi}\right)_{\{\Delta\}}\right)^{\varphi^{-1}}$.

1. The non-fullness certificate is a group $M=M(\Delta) \leq \operatorname{Sym}(\Delta)$ such that

$$
M \nsupseteq \operatorname{Alt}(\Delta) \quad \text { and } \quad \operatorname{Aut}_{G}(s)^{\varphi} \leq M .
$$

2. The fullness certificate is a group $K=K(\Delta) \leq \operatorname{Sym}(\Omega)$ such that

$$
K \leq \operatorname{Aut}_{G}(s) \quad \text { and } \quad \Delta^{K^{\varphi}}=\Delta \quad \text { and } \quad\left(K^{\varphi}\right)^{\Delta} \geq \operatorname{Alt}(\Delta)
$$

Local certificates theorem

Theorem

Let $\Delta \subset \Gamma, k=|\Delta|$, and

$$
\max \left\{8,2+\log _{2} n\right\}<k \leq c|\Gamma|
$$

Then by making at most $k!n^{2}$ calls to String Isomorphism problems on domains of size $\leq n / k$ and performing $k!n^{O(1)}$ computation, one can decide whether or not Δ is full and

Local certificates theorem

Theorem

Let $\Delta \subset \Gamma, k=|\Delta|$, and

$$
\max \left\{8,2+\log _{2} n\right\}<k \leq c|\Gamma|
$$

Then by making at most $k!n^{2}$ calls to String Isomorphism problems on domains of size $\leq n / k$ and performing $k!n^{O(1)}$ computation, one can decide whether or not Δ is full and

- if Δ is full, then find a certificate $K(\Delta) \leq \operatorname{Aut}_{G}(s)$ of fullness of Δ,
- if Δ is not full, then find a certificate $M(\Delta) \leq \operatorname{Sym}(\Delta)$ of non-fullness.

Local certificates theorem

Theorem

Let $\Delta \subset \Gamma, k=|\Delta|$, and

$$
\max \left\{8,2+\log _{2} n\right\}<k \leq c|\Gamma|
$$

Then by making at most $k!n^{2}$ calls to String Isomorphism problems on domains of size $\leq n / k$ and performing $k!n^{O(1)}$ computation, one can decide whether or not Δ is full and

- if Δ is full, then find a certificate $K(\Delta) \leq \operatorname{Aut}_{G}(s)$ of fullness of Δ,
- if Δ is not full, then find a certificate $M(\Delta) \leq \operatorname{Sym}(\Delta)$ of non-fullness.
Moreover, the families $\{(\Delta, K(\Delta)): \Delta$ is full $\}$ and $\{(\Delta, M(\Delta)): \Delta$ is not full $\}$ are canonical.

