A short introduction to Babai’s
quasipolinomial graph isomorphism testing

llia Ponomarenko

St.Petersburg Department of V.A.Steklov Institute of Mathematics
of the Russian Academy of Sciences

The International Conference and PhD-Master Summer School
on "Graphs and Groups, Spectra and Symmetries” (G2S2)
Novosibirsk, Russia, August 15-28, 2016.

The main statement

The printed version: arxiv:1512.03547v2
The video lectures: at Babai’s home page.

The main statement

The printed version: arxiv:1512.03547v2
The video lectures: at Babai’s home page.

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time
exp((log n)°("): Graph Isomorphism, String Isomorphism,
Coset Intersection.

The main statement

The printed version: arxiv:1512.03547v2
The video lectures: at Babai’s home page.

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time
exp((log n)°("): Graph Isomorphism, String Isomorphism,
Coset Intersection.

Graph Isomorphism. Known: exp(O(,/nlog n))
(Kantor-Luks-Babai, 1983).

The main statement

The printed version: arxiv:1512.03547v2
The video lectures: at Babai’s home page.

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time
exp((log n)°("): Graph Isomorphism, String Isomorphism,
Coset Intersection.

Graph Isomorphism. Known: exp(O(,/nlog n))
(Kantor-Luks-Babai, 1983).

String Isomorphism. For strings s, s’ and a group G, find
Isog(s, '), where s, 8" : Q — ¥ are strings over the alphabet
and Isog(s,s') = {fc G: s’ =¢'}.

The main statement

The printed version: arxiv:1512.03547v2
The video lectures: at Babai’s home page.

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time
exp((log n)°("): Graph Isomorphism, String Isomorphism,
Coset Intersection.

Graph Isomorphism. Known: exp(O(,/nlog n))
(Kantor-Luks-Babai, 1983).

String Isomorphism. For strings s, s’ and a group G, find
Isog(s, '), where s, 8" : Q — ¥ are strings over the alphabet
and Isog(s,s') = {fc G: s’ =g&'}.

Coset intersection. For G,G' < Sym(Q2) and f, f € Sym(Q),
find Gf N G'f'.

The sense of “quasipolynomial”

e The algorithm splits the problem of size ninto q(n)
subproblems of size cn, where 0 < ¢ < 1.

The sense of “quasipolynomial”

e The algorithm splits the problem of size ninto q(n)
subproblems of size cn, where 0 < ¢ < 1.

e So for the computational complexity F(n) of the algorithm,
F(n) < q(n)F(cn).

The sense of “quasipolynomial”

e The algorithm splits the problem of size ninto q(n)
subproblems of size cn, where 0 < ¢ < 1.

e So for the computational complexity F(n) of the algorithm,
F(n) < q(n)F(cn).

e Thus, F(n) < g(n)©Uean),

The sense of “quasipolynomial”

e The algorithm splits the problem of size ninto q(n)
subproblems of size cn, where 0 < ¢ < 1.

e So for the computational complexity F(n) of the algorithm,
F(n) < q(n)F(cn).
e Thus, F(n) < g(n)©Uean),

To get quasipolynomial bound, the function q(n) must be
quasipolunomially bounded.

From Graph Isomorphism to String Isomorphism

e Let I, be graphs with vertices {1, ..., n},

From Graph Isomorphism to String Isomorphism

e Let I, be graphs with vertices {1, ..., n},

e set s, 5’ to be the strings on Q = {1,...,n}? over the
alphabet ¥ = {0, 1} obtained from the adjacency matrices
of I and I, respectively,

From Graph Isomorphism to String Isomorphism

e LetI,I" be graphs with vertices {1,...,n},

e set s, s to be the strings on Q = {1,...,n}? over the
alphabet ¥ = {0, 1} obtained from the adjacency matrices
of I and I, respectively,

e set G to be the permutation group induced by the action of
Sym(n) on pairs, G < Sym(£2).

From Graph Isomorphism to String Isomorphism

e LetI,I" be graphs with vertices {1,...,n},

e set s, s to be the strings on Q = {1,...,n}? over the
alphabet ¥ = {0, 1} obtained from the adjacency matrices
of I and I, respectively,

e set G to be the permutation group induced by the action of
Sym(n) on pairs, G < Sym(£2).

e Now I = T"iff Isog(s, §') # .

The Luks Algorithm: preliminaries

For K € Sym(Q2) and A C Q, set
Iso(s,8') = {k e K: s(a) ='(a¥) forall a € A}.

The Luks Algorithm: preliminaries

For K € Sym(Q2) and A C Q, set

Iso(s,8') = {k e K: s(a) ='(a¥) forall a € A}.

o The String Isomorphism is to find Iso% (s, 8') with K = G
and A = Q.

¢ In what follows, K is a right coset of G or empty, and A is
G-invariant.

The Luks Algorithm: preliminaries

For K € Sym(Q2) and A C Q, set

Iso(s,8') = {k e K: s(a) ='(a¥) forall a € A}.
K

e The String Isomorphism is to find Iso% (s, s') with K = G
and A = Q.

¢ In what follows, K is a right coset of G or empty, and A is
G-invariant.

Let K = Gf, where f € Sym(Q) and A% = A. Then

The Luks Algorithm: preliminaries

For K € Sym(Q2) and A C Q, set
Iso(s,8') = {k e K: s(a) ='(a¥) forall a € A}.

e The String Isomorphism is to find Iso% (s, s') with K = G
and A = Q.

¢ In what follows, K is a right coset of G or empty, and A is
G-invariant.

Let K = Gf, where f € Sym(Q) and A% = A. Then
e Aut3(s) is a subgroup of G,

o Is03(s, §) is either empty or a right coset of Autg(s).

The Luks Algorithm: intransitive case

Input: strings s, s’ on Q, group G < Sym(Q2), a G-invariant set
A C Q,and f € Sym(Q).

The Luks Algorithm: intransitive case

Input: strings s, s’ on Q, group G < Sym(Q2), a G-invariant set
A C Q,and f € Sym(Q).
Output: Iso5(s, s).

The Luks Algorithm: intransitive case

Input: strings s, s’ on Q, group G < Sym(Q2), a G-invariant set
A C Q,and f € Sym(Q).

Output: Iso5(s, s).

Step 1 (G is intransitive on A). Let A = Ay U Ay, where A; is
G-invariant nonempty set. Then

Aq{UA A
Isog; “%(s, s') = Isog? (s,),

A
where Gifi = Isog (s, §').

The Luks Algorithm: intransitive case

Input: strings s, s’ on Q, group G < Sym(Q2), a G-invariant set
A C Q,and f € Sym(Q).
Output: Iso5(s, s).

Step 1 (G is intransitive on A). Let A = Ay U Ay, where A; is
G-invariant nonempty set. Then

Aq{UA A
Isog; “%(s, s') = Isog? (s,),

A
where Gifi = Isog (s, §').

The time bound is F(n) < F(ny) + F(n2), where n= ny + no
and n; = |A,|

The Luks Algorithm: transitive case

Step 2 (G is “imprimitive” on A). Let A=Ay U---U Apisa
G-invariant partition with the maximum possible |A1| < |Q] (it is
possible that |[A| = 1 and G is primitive).

The Luks Algorithm: transitive case

Step 2 (G is “imprimitive” on A). Let A=Ay U---U Apisa
G-invariant partition with the maximum possible |A1| < |Q] (it is
possible that |[A| = 1 and G is primitive).

Set ¢ : G — Sym(m) to be the induced homomorphism.

N=ker(y), G=im(y). k=Gl

Then .
Is0G(s,s') = U |S°ﬁg,-f(37 s),
i=1
where {gi, ..., 9k} is a full set of distinct representatives of the

family {+'~'(g) : g € G}. Here,
Orb(N,A) ={Ay ..., An} and |A;]=n/m.

The Luks Algorithm: transitive case

Step 2 (G is “imprimitive” on A). Let A=Ay U---U Apisa
G-invariant partition with the maximum possible |A1| < |Q] (it is
possible that |[A| = 1 and G is primitive).

Set ¢ : G — Sym(m) to be the induced homomorphism.

N=ker(y), G=im(y). k=Gl

Then .
Is0G(s,s') = U |S°ﬁg,-f(37 s),
i=1
where {gi, ..., 9k} is a full set of distinct representatives of the

family {+'~'(g) : g € G}. Here,
Orb(N,A) ={Ay ..., An} and |A;]=n/m.

Thus, the time bound here is F(n) < mkF(n/m).

The Luks Algorithm: remarks

o If the group G is solvable, then k = m°(") and
F(n) < n@0),

The Luks Algorithm: remarks

o If the group G is solvable, then k = m°(") and
F(n) < n@0),

e If all non-abelian composition factors of G are bounded by
a constant, say d, then k = m9(9 and F(n) < n9(@) where
g is a function.

The Luks Algorithm: remarks

o If the group G is solvable, then k = m°(") and
F(n) < n@0),

e If all non-abelian composition factors of G are bounded by
a constant, say d, then k = m9(9 and F(n) < n9(@) where
g is a function.

o If k = |G| = n©(°9") for all primitive groups G occuring in
the Luks algorithm, then

F(n) < n(|og n)O(1).

The Luks Algorithm: remarks

o If the group G is solvable, then k = m°(") and
F(n) < n@0),

e If all non-abelian composition factors of G are bounded by
a constant, say d, then k = m9(9 and F(n) < n9(@) where
g is a function.

o If k = |G| = n©(°9") for all primitive groups G occuring in
the Luks algorithm, then

F(n) < n(|og n)O(1).

In all the above cases the Luks algorithm is quasipolynomial.

An obstacle to the Luks approach

Let A)) and S be the actions of Alt(m) and Sym(m) on (7).

An obstacle to the Luks approach

Let A)) and S be the actions of Alt(m) and Sym(m) on (7).

Definition

The Cameron group G < Sym(n) with parameters s,t > 1 and
m > max{2t,5} is defined by the following conditions:

S
n— (’:’) and (Alhs < G < siP i sym(s)

and the action of G on the factors of Soc(G) is transitive.

An obstacle to the Luks approach

Let A)) and S be the actions of Alt(m) and Sym(m) on (7).

Definition

The Cameron group G < Sym(n) with parameters s,t > 1 and
m > max{2t,5} is defined by the following conditions:

S
n— (T) and (Al < G < S Sym(s)
and the action of G on the factors of Soc(G) is transitive.

Theorem (Cameron, 1981)

For n > 25, if G is primitive and |G| > n'*1°%:" then G is a
Cameron group.

Using CFSG were removed by Pyber (2016).

Reduction to Johnson scheme

The Luks algorithm stops if |G| is larger than quasipolynomial,
i.e. if |G| is a Cameron group.

Reduction to Johnson scheme

The Luks algorithm stops if |G| is larger than quasipolynomial,
i.e. if |G| is a Cameron group.

In fact, one can continue until G becomes a Johnson group,
i.e., the Cameron group with s = 1:

Al <g<sit

Reduction to Johnson scheme

The Luks algorithm stops if |G| is larger than quasipolynomial,
i.e. if |G| is a Cameron group.

In fact, one can continue until G becomes a Johnson group,
i.e., the Cameron group with s = 1:

Al <g<sit

It is well known that

ﬂAut sit
wheret > 2, m>2t+1, and
Ri={(S,T)eQ?:|SNT|=t-i}.
with Q = (T)

Reduction to Johnson scheme

The Luks algorithm stops if |G| is larger than quasipolynomial,
i.e. if |G| is a Cameron group.

In fact, one can continue until G becomes a Johnson group,
i.e., the Cameron group with s = 1:

Al <g<sit

It is well known that

ﬂ Aut(R;) = S,
wheret > 2, m>2t+1, and
Ri={(S,T)eQ?:|SNT|=t-i}.
with Q = (). Here J(m, t) = (2, {R;}) is the Johnson scheme.

Removing obstackles in Luks’s algorithm

Since G is a Cameron group, one can find an explicitly given
homomorphism
v : G— Alt(N),

where I is a set of cardinality m = clog, n.

Removing obstackles in Luks’s algorithm

Since G is a Cameron group, one can find an explicitly given
homomorphism

v : G— Alt(N),

where I is a set of cardinality m = clog, n.

Final steps of Babai’s algorithm:

o Autg(s)? > Alt(I) and Autg(s')? > Alt(T);

Removing obstackles in Luks’s algorithm

Since G is a Cameron group, one can find an explicitly given
homomorphism

v : G— Alt(N),

where I is a set of cardinality m = clog, n.

Final steps of Babai’s algorithm:

e Autg(s)? > Alt(I") and Autg(s’)¥ > Alt(I);
replace G by ker(yp).

Removing obstackles in Luks’s algorithm

Since G is a Cameron group, one can find an explicitly given
homomorphism

v : G— Alt(N),

where I is a set of cardinality m = clog, n.

Final steps of Babai’s algorithm:

e Autg(s)? > Alt(I") and Autg(s’)¥ > Alt(I);
replace G by ker(yp).

e Autg(s)? > Alt(I") and Autg(s’)? < Alt(I), or vice versa;

Removing obstackles in Luks’s algorithm

Since G is a Cameron group, one can find an explicitly given
homomorphism

v : G— Alt(N),

where I is a set of cardinality m = clog, n.

Final steps of Babai’s algorithm

° Autg()‘0 > Alt()
replace G by ker(y).

e Autg(s)? > Alt(r)
here Isog(s, s') =

and Autg(s')? > Alt(I);

and AutG(s’)“P < Alt(I), or vice versa;

Removing obstackles in Luks’s algorithm

Since G is a Cameron group, one can find an explicitly given
homomorphism

v : G— Alt(N),

where I is a set of cardinality m = clog, n.

Final steps of Babai’s algorithm:

o Autg(s)? > Alt(I') and Autg(s')¥? > Aly(IN);
replace G by ker(y).

e Autg(s)? > Alt(I") and Autg(s’)? < Alt(I), or vice versa;
here Isog(s, ') = @.

e Autg(s)? < Alt(I") and Autg(s')? < Alt(IN);

A~~~ ~—

Removing obstackles in Luks’s algorithm

Since G is a Cameron group, one can find an explicitly given
homomorphism

v : G— Alt(N),

where I is a set of cardinality m = clog, n.

Final steps of Babai’s algorithm:

e Autg(s)? > Alt(I') and Autg(s')? > Alt(T);
replace G by ker(yp).

e Autg(s)? > Alt(I") and Autg(s’)? < Alt(I), or vice versa;
here Isog(s, ') = @.

e Autg(s)? < Alt(I") and Autg(s')? < Alt(IN);
replace G by H¢~', where H = (Autg(s)?, Autg(s')?).

Local certificates

A set A C T is said to be full if

(Ga N Autg(s))? > Alt(A),

1

where Ga = ((G¥)(a})? -

Local certificates

A set A C T is said to be full if

(Ga N Autg(s))? > Alt(A),

where Ga = ((G*)(a})?
1. The non-fullness certificate is a group M = M(A) < Sym(A)
such that

M % Alt(A) and Autg(s)? < M.

Local certificates

A set A C T is said to be full if

(Ga N Autg(s))? > Alt(A),

—1

where GA = ((G‘P){A})Sﬁ

1. The non-fullness certificate is a group M = M(A) < Sym(A)
such that
M % Alt(A) and Autg(s)? < M.

2. The fullness certificate is a group K = K(A) < Sym(Q2) such
that

K < Autg(s) and AX"=A and (K¥)2 > Alt(A).

Local certificates theorem

Theorem
LetAcCT,k=]A| and

max{8,2 + log, n} < k < c|l|.

Then by making at most k! n? calls to String Isomorphism
problems on domains of size < n/k and performing k!n°")
computation, one can decide whether or not A is full and

Local certificates theorem

Theorem
LetAcCT,k=]A| and

max{8,2 + log, n} < k < c|l|.

Then by making at most k! n? calls to String Isomorphism
problems on domains of size < n/k and performing k!n°")
computation, one can decide whether or not A is full and
e if Ais full, then find a certificate K(A) < Autg(s) of
fullness of A,
e if A is not full, then find a certificate M(A) < Sym(A) of
non-fullness.

Local certificates theorem

Theorem
LetAcCT,k=]A| and

max{8,2 + log, n} < k < c|l|.

Then by making at most k! n? calls to String Isomorphism
problems on domains of size < n/k and performing k!n°")
computation, one can decide whether or not A is full and
e if Ais full, then find a certificate K(A) < Autg(s) of
fullness of A,
e if Ais not full, then find a certificate M(A) < Sym(A) of
non-fullness.
Moreover, the families {(A, K(A)) : Ais full} and
{(A,M(A)): Ais not full} are canonical.

