A short introduction to Babai's quasipolinomial graph isomorphism testing

Ilia Ponomarenko

St.Petersburg Department of V.A.Steklov Institute of Mathematics of the Russian Academy of Sciences

> The International Conference and PhD-Master Summer School on "Graphs and Groups, Spectra and Symmetries" (G2S2) Novosibirsk, Russia, August 15-28, 2016.

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time $exp((\log n)^{O(1)})$: Graph Isomorphism, String Isomorphism, Coset Intersection.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time $exp((\log n)^{O(1)})$: Graph Isomorphism, String Isomorphism, Coset Intersection.

(日) (日) (日) (日) (日) (日) (日)

Graph Isomorphism. Known: $\exp(O(\sqrt{n \log n}))$ (Kantor-Luks-Babai, 1983).

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time $exp((\log n)^{O(1)})$: Graph Isomorphism, String Isomorphism, Coset Intersection.

Graph Isomorphism. Known: $\exp(O(\sqrt{n \log n}))$ (Kantor-Luks-Babai, 1983). **String Isomorphism.** For strings s, s' and a group G, find $\operatorname{Iso}_G(s, s')$, where $s, s' : \Omega \to \Sigma$ are strings over the alphabet Σ and $\operatorname{Iso}_G(s, s') = \{f \in G : s^f = s'\}$.

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time $exp((\log n)^{O(1)})$: Graph Isomorphism, String Isomorphism, Coset Intersection.

Graph Isomorphism. Known: $\exp(O(\sqrt{n \log n}))$ (Kantor-Luks-Babai, 1983).

String Isomorphism. For strings s, s' and a group G, find $Iso_G(s, s')$, where $s, s' : \Omega \to \Sigma$ are strings over the alphabet Σ and $Iso_G(s, s') = \{f \in G : s^f = s'\}$. **Coset intersection.** For $G, G' \leq Sym(\Omega)$ and $f, f' \in Sym(\Omega)$, find $Gf \cap G'f'$. • The algorithm splits the problem of size *n* into *q*(*n*) subproblems of size *cn*, where 0 < *c* < 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- The algorithm splits the problem of size *n* into *q*(*n*) subproblems of size *cn*, where 0 < *c* < 1.
- So for the computational complexity *F*(*n*) of the algorithm,
 F(*n*) ≤ *q*(*n*)*F*(*cn*).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The algorithm splits the problem of size *n* into *q*(*n*) subproblems of size *cn*, where 0 < *c* < 1.
- So for the computational complexity *F*(*n*) of the algorithm,
 F(*n*) ≤ *q*(*n*)*F*(*cn*).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Thus,
$$F(n) \le q(n)^{O(\log n)}$$
.

- The algorithm splits the problem of size *n* into *q*(*n*) subproblems of size *cn*, where 0 < *c* < 1.
- So for the computational complexity *F*(*n*) of the algorithm, *F*(*n*) ≤ *q*(*n*)*F*(*cn*).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Thus,
$$F(n) \leq q(n)^{O(\log n)}$$
.

To get quasipolynomial bound, the function q(n) must be quasipolunomially bounded.

• Let Γ , Γ' be graphs with vertices $\{1, \ldots, n\}$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let Γ , Γ' be graphs with vertices $\{1, \ldots, n\}$,
- set s, s' to be the strings on Ω = {1,..., n}² over the alphabet Σ = {0, 1} obtained from the adjacency matrices of Γ and Γ', respectively,

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Let Γ , Γ' be graphs with vertices $\{1, \ldots, n\}$,
- set s, s' to be the strings on Ω = {1,..., n}² over the alphabet Σ = {0, 1} obtained from the adjacency matrices of Γ and Γ', respectively,
- set G to be the permutation group induced by the action of Sym(n) on pairs, G ≤ Sym(Ω).

A D F A 同 F A E F A E F A Q A

- Let Γ , Γ' be graphs with vertices $\{1, \ldots, n\}$,
- set s, s' to be the strings on Ω = {1,..., n}² over the alphabet Σ = {0, 1} obtained from the adjacency matrices of Γ and Γ', respectively,
- set G to be the permutation group induced by the action of Sym(n) on pairs, G ≤ Sym(Ω).

A D F A 同 F A E F A E F A Q A

• Now $\Gamma \cong \Gamma'$ iff $\operatorname{Iso}_G(s, s') \neq \emptyset$.

For
$$K \subset \text{Sym}(\Omega)$$
 and $\Delta \subset \Omega$, set
 $\text{Iso}_{K}^{\Delta}(s, s') = \{k \in K : s(\alpha) = s'(\alpha^{k}) \text{ for all } \alpha \in \Delta\}.$

(ロ)、

For
$$\mathcal{K} \subset \mathsf{Sym}(\Omega)$$
 and $\Delta \subset \Omega$, set
 $\mathsf{Iso}^{\Delta}_{\mathcal{K}}(s,s') = \{k \in \mathcal{K} : s(\alpha) = s'(\alpha^k) \text{ for all } \alpha \in \Delta\}.$

Remarks

- The String Isomorphism is to find Iso^Δ_K(s, s') with K = G and Δ = Ω.
- In what follows, K is a right coset of G or empty, and Δ is G-invariant.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For
$$\mathcal{K} \subset \text{Sym}(\Omega)$$
 and $\Delta \subset \Omega$, set
 $\text{Iso}_{\mathcal{K}}^{\Delta}(s, s') = \{k \in \mathcal{K} : s(\alpha) = s'(\alpha^{k}) \text{ for all } \alpha \in \Delta\}.$

Remarks

- The String Isomorphism is to find Iso^Δ_K(s, s') with K = G and Δ = Ω.
- In what follows, K is a right coset of G or empty, and ∆ is G-invariant.

Proposition

Let K = Gf, where $f \in Sym(\Omega)$ and $\Delta^G = \Delta$. Then

For
$$\mathcal{K} \subset \text{Sym}(\Omega)$$
 and $\Delta \subset \Omega$, set
 $\text{Iso}_{\mathcal{K}}^{\Delta}(s, s') = \{k \in \mathcal{K} : s(\alpha) = s'(\alpha^{k}) \text{ for all } \alpha \in \Delta\}.$

Remarks

- The String Isomorphism is to find Iso^Δ_K(s, s') with K = G and Δ = Ω.
- In what follows, K is a right coset of G or empty, and ∆ is G-invariant.

Proposition

Let K = Gf, where $f \in Sym(\Omega)$ and $\Delta^G = \Delta$. Then

- Aut $_{G}^{\Delta}(s)$ is a subgroup of G,
- $Iso_{Gf}^{\Delta}(s, s')$ is either empty or a right coset of $Aut_{G}^{\Delta}(s)$.

Input: strings s, s' on Ω , group $G \leq \text{Sym}(\Omega)$, a *G*-invariant set $\Delta \subset \Omega$, and $f \in \text{Sym}(\Omega)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Input: strings s, s' on Ω , group $G \leq \text{Sym}(\Omega)$, a *G*-invariant set $\Delta \subset \Omega$, and $f \in \text{Sym}(\Omega)$. **Output:** $\text{lso}_{Gf}^{\Delta}(s, s')$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Input: strings s, s' on Ω , group $G \leq \text{Sym}(\Omega)$, a *G*-invariant set $\Delta \subset \Omega$, and $f \in \text{Sym}(\Omega)$. **Output:** $\text{lso}_{Gf}^{\Delta}(s, s')$.

Step 1 (*G* is intransitive on Δ). Let $\Delta = \Delta_1 \cup \Delta_2$, where Δ_i is *G*-invariant nonempty set. Then

$$\mathsf{Iso}_{Gf}^{\Delta_1\cup\Delta_2}(s,s') = \mathsf{Iso}_{G_1f_1}^{\Delta_2}(s,s'),$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

where $G_1 f_1 = \operatorname{lso}_{Gf}^{\Delta_1}(s, s')$.

Input: strings s, s' on Ω , group $G \leq \text{Sym}(\Omega)$, a *G*-invariant set $\Delta \subset \Omega$, and $f \in \text{Sym}(\Omega)$. **Output:** $\text{Iso}_{Gf}^{\Delta}(s, s')$.

Step 1 (*G* is intransitive on Δ). Let $\Delta = \Delta_1 \cup \Delta_2$, where Δ_i is *G*-invariant nonempty set. Then

$$\mathsf{Iso}_{Gf}^{\Delta_1\cup\Delta_2}(s,s') = \mathsf{Iso}_{G_1f_1}^{\Delta_2}(s,s'),$$

where $G_1 f_1 = \operatorname{Iso}_{Gf}^{\Delta_1}(s, s')$.

The time bound is $F(n) \le F(n_1) + F(n_2)$, where $n = n_1 + n_2$ and $n_i = |\Delta_i|$.

◆□> <圖> < => < => < => <0 < ○</p>

Step 2 (*G* is "imprimitive" on Δ). Let $\Delta = \Delta_1 \cup \cdots \cup \Delta_m$ is a *G*-invariant partition with the maximum possible $|\Delta_1| < |\Omega|$ (it is possible that $|\Delta_1| = 1$ and *G* is primitive).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Step 2 (*G* is "imprimitive" on Δ). Let $\Delta = \Delta_1 \cup \cdots \cup \Delta_m$ is a *G*-invariant partition with the maximum possible $|\Delta_1| < |\Omega|$ (it is possible that $|\Delta_1| = 1$ and *G* is primitive).

Set ψ : $G \rightarrow$ Sym(m) to be the induced homomorphism.

$$N = \ker(\psi), \quad \overline{G} = \operatorname{im}(\psi), \quad k = |\overline{G}|.$$

Then

$$\operatorname{Iso}_{Gf}^{\Delta}(s,s') = \bigcup_{i=1}^{k} \operatorname{Iso}_{Ng_if}^{\Delta}(s,s'),$$

where $\{g_1, \ldots, g_k\}$ is a full set of distinct representatives of the family $\{\psi^{-1}(\overline{g}) : \overline{g} \in \overline{G}\}$. Here,

$$\operatorname{Orb}(N,\Delta) = \{\Delta_1 \dots, \Delta_m\} \text{ and } |\Delta_i| = n/m.$$

Step 2 (*G* is "imprimitive" on Δ). Let $\Delta = \Delta_1 \cup \cdots \cup \Delta_m$ is a *G*-invariant partition with the maximum possible $|\Delta_1| < |\Omega|$ (it is possible that $|\Delta_1| = 1$ and *G* is primitive).

Set ψ : $G \rightarrow$ Sym(m) to be the induced homomorphism.

$$N = \ker(\psi), \quad \overline{G} = \operatorname{im}(\psi), \quad k = |\overline{G}|.$$

Then

$$\operatorname{Iso}_{Gf}^{\Delta}(s,s') = \bigcup_{i=1}^{k} \operatorname{Iso}_{Ng_if}^{\Delta}(s,s'),$$

where $\{g_1, \ldots, g_k\}$ is a full set of distinct representatives of the family $\{\psi^{-1}(\overline{g}) : \overline{g} \in \overline{G}\}$. Here,

$$\operatorname{Orb}(N,\Delta) = \{\Delta_1 \dots, \Delta_m\} \text{ and } |\Delta_i| = n/m.$$

Thus, the time bound here is $F(n) \leq mkF(n/m)$.

The Luks Algorithm: remarks

• If the group *G* is solvable, then $k = m^{O(1)}$ and $F(n) \le n^{O(1)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The Luks Algorithm: remarks

- If the group *G* is solvable, then $k = m^{O(1)}$ and $F(n) \le n^{O(1)}$.
- If all non-abelian composition factors of *G* are bounded by a constant, say *d*, then $k = m^{g(d)}$ and $F(n) \le n^{g(d)}$, where *g* is a function.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- If the group *G* is solvable, then $k = m^{O(1)}$ and $F(n) \le n^{O(1)}$.
- If all non-abelian composition factors of *G* are bounded by a constant, say *d*, then $k = m^{g(d)}$ and $F(n) \le n^{g(d)}$, where *g* is a function.
- If k = |G| = n^{O(log n)} for all primitive groups G occuring in the Luks algorithm, then

$$F(n) \le n^{(\log n)^{O(1)}}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- If the group *G* is solvable, then $k = m^{O(1)}$ and $F(n) \le n^{O(1)}$.
- If all non-abelian composition factors of *G* are bounded by a constant, say *d*, then $k = m^{g(d)}$ and $F(n) \le n^{g(d)}$, where *g* is a function.
- If k = |G| = n^{O(log n)} for all primitive groups G occuring in the Luks algorithm, then

$$F(n) \leq n^{(\log n)^{O(1)}}.$$

In all the above cases the Luks algorithm is quasipolynomial.

An obstacle to the Luks approach

Let $A_m^{(t)}$ and $S_m^{(t)}$ be the actions of Alt(*m*) and Sym(*m*) on $\binom{m}{t}$.

An obstacle to the Luks approach

Let $A_m^{(t)}$ and $S_m^{(t)}$ be the actions of Alt(*m*) and Sym(*m*) on $\binom{m}{t}$.

Definition

The Cameron group $G \leq \text{Sym}(n)$ with parameters $s, t \geq 1$ and $m \geq \max\{2t, 5\}$ is defined by the following conditions:

$$n = {m \choose t}^s$$
 and $(A_m^{\{t\}})^s \le G \le S_m^{\{t\}} \wr \operatorname{Sym}(s)$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

and the action of G on the factors of Soc(G) is transitive.

An obstacle to the Luks approach

Let $A_m^{(t)}$ and $S_m^{(t)}$ be the actions of Alt(*m*) and Sym(*m*) on $\binom{m}{t}$.

Definition

The Cameron group $G \leq \text{Sym}(n)$ with parameters $s, t \geq 1$ and $m \geq \max\{2t, 5\}$ is defined by the following conditions:

$$n = {m \choose t}^s$$
 and $(A_m^{\{t\}})^s \le G \le S_m^{\{t\}} \wr \operatorname{Sym}(s)$

and the action of G on the factors of Soc(G) is transitive.

Theorem (Cameron, 1981)

For $n \ge 25$, if *G* is primitive and $|G| \ge n^{1+\log_2 n}$, then *G* is a Cameron group.

Using CFSG were removed by Pyber (2016).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

In fact, one can continue until \overline{G} becomes a Johnson group, i.e., the Cameron group with s = 1:

$$A_m^{\{t\}} \leq G \leq S_m^{\{t\}}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

In fact, one can continue until \overline{G} becomes a Johnson group, i.e., the Cameron group with s = 1:

$$A_m^{\{t\}} \leq G \leq S_m^{\{t\}}$$

It is well known that

$$\bigcap_{i=0}^{t}\operatorname{Aut}(R_{i})=S_{m}^{\{t\}},$$

where $t \ge 2$, $m \ge 2t + 1$, and

$$R_i = \{(S,T) \in \Omega^2 : |S \cap T| = t - i\}.$$

・ロト・日本・日本・日本・日本

with $\Omega = \binom{m}{t}$.

In fact, one can continue until \overline{G} becomes a Johnson group, i.e., the Cameron group with s = 1:

$$A_m^{\{t\}} \leq G \leq S_m^{\{t\}}$$

It is well known that

$$\bigcap_{i=0}^{t} \operatorname{Aut}(R_i) = S_m^{\{t\}},$$

where $t \ge 2$, $m \ge 2t + 1$, and

$$R_i = \{(S,T) \in \Omega^2 : |S \cap T| = t - i\}.$$

with $\Omega = \binom{m}{t}$. Here $J(m, t) = (\Omega, \{R_i\})$ is the Johnson scheme.

$$\varphi: \boldsymbol{G} \to \mathsf{Alt}(\Gamma),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where Γ is a set of cardinality $m = c \log_2 n$.

$$\varphi: \boldsymbol{G} \to \mathsf{Alt}(\Gamma),$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where Γ is a set of cardinality $m = c \log_2 n$.

Final steps of Babai's algorithm:

• $\operatorname{Aut}_G(s)^{\varphi} \ge \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_G(s')^{\varphi} \ge \operatorname{Alt}(\Gamma)$;

$$\varphi: \boldsymbol{G} \to \mathsf{Alt}(\Gamma),$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where Γ is a set of cardinality $m = c \log_2 n$.

Final steps of Babai's algorithm:

 Aut_G(s)^φ ≥ Alt(Γ) and Aut_G(s')^φ ≥ Alt(Γ); replace G by ker(φ).

$$\varphi: \boldsymbol{G} \to \mathsf{Alt}(\Gamma),$$

where Γ is a set of cardinality $m = c \log_2 n$.

- Aut_G(s)^φ ≥ Alt(Γ) and Aut_G(s')^φ ≥ Alt(Γ); replace G by ker(φ).
- Aut_G(s)^φ ≥ Alt(Γ) and Aut_G(s')^φ < Alt(Γ), or vice versa;

$$\varphi: \boldsymbol{G} \to \mathsf{Alt}(\Gamma),$$

where Γ is a set of cardinality $m = c \log_2 n$.

- Aut_G(s)^φ ≥ Alt(Γ) and Aut_G(s')^φ ≥ Alt(Γ); replace G by ker(φ).
- Aut_G(s)^φ ≥ Alt(Γ) and Aut_G(s')^φ < Alt(Γ), or vice versa; here Iso_G(s, s') = Ø.

$$\varphi: \boldsymbol{G} \to \mathsf{Alt}(\Gamma),$$

where Γ is a set of cardinality $m = c \log_2 n$.

- Aut_G(s)^φ ≥ Alt(Γ) and Aut_G(s')^φ ≥ Alt(Γ); replace G by ker(φ).
- Aut_G(s)^φ ≥ Alt(Γ) and Aut_G(s')^φ < Alt(Γ), or vice versa; here Iso_G(s, s') = Ø.
- $\operatorname{Aut}_G(s)^{\varphi} < \operatorname{Alt}(\Gamma)$ and $\operatorname{Aut}_G(s')^{\varphi} < \operatorname{Alt}(\Gamma)$;

$$\varphi: \boldsymbol{G} \to \mathsf{Alt}(\Gamma),$$

where Γ is a set of cardinality $m = c \log_2 n$.

- Aut_G(s)^φ ≥ Alt(Γ) and Aut_G(s')^φ ≥ Alt(Γ); replace G by ker(φ).
- Aut_G(s)^φ ≥ Alt(Γ) and Aut_G(s')^φ < Alt(Γ), or vice versa; here Iso_G(s, s') = Ø.
- Aut_G(s)^φ < Alt(Γ) and Aut_G(s')^φ < Alt(Γ); replace G by H^{φ⁻¹}, where H = ⟨Aut_G(s)^φ, Aut_G(s')^φ⟩.

A set $\Delta \subset \Gamma$ is said to be full if

 $(G_{\Delta} \cap \operatorname{Aut}_{G}(s))^{\varphi} \geq \operatorname{Alt}(\Delta),$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

where $G_{\Delta} = ((G^{\varphi})_{\{\Delta\}})^{\varphi^{-1}}$.

A set $\Delta \subset \Gamma$ is said to be full if

$$(G_{\Delta} \cap \operatorname{Aut}_{G}(s))^{\varphi} \geq \operatorname{Alt}(\Delta),$$

where
$${\it G}_{\Delta}=(({\it G}^{arphi})_{\{\Delta\}})^{arphi^{-1}}.$$

1. The non-fullness certificate is a group $M = M(\Delta) \leq \text{Sym}(\Delta)$ such that

 $M \geq \operatorname{Alt}(\Delta)$ and $\operatorname{Aut}_G(s)^{\varphi} \leq M$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A set $\Delta \subset \Gamma$ is said to be full if

$$(G_{\Delta} \cap \operatorname{Aut}_{G}(s))^{\varphi} \geq \operatorname{Alt}(\Delta),$$

where
$${\it G}_{\Delta}=(({\it G}^{arphi})_{\{\Delta\}})^{arphi^{-1}}.$$

1. The non-fullness certificate is a group $M = M(\Delta) \leq \text{Sym}(\Delta)$ such that

$$M \geq \operatorname{Alt}(\Delta)$$
 and $\operatorname{Aut}_G(s)^{\varphi} \leq M$.

2. The fullness certificate is a group $K = K(\Delta) \leq Sym(\Omega)$ such that

$$K \leq \operatorname{Aut}_G(s)$$
 and $\Delta^{K^{\varphi}} = \Delta$ and $(K^{\varphi})^{\Delta} \geq \operatorname{Alt}(\Delta)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Local certificates theorem

Theorem

```
Let \Delta \subset \Gamma, k = |\Delta|, and
```

```
\max\{8, 2 + \log_2 n\} < k \le c |\Gamma|.
```

Then by making at most $k! n^2$ calls to String Isomorphism problems on domains of size $\leq n/k$ and performing $k!n^{O(1)}$ computation, one can decide whether or not Δ is full and

Local certificates theorem

Theorem

```
Let \Delta \subset \Gamma, k = |\Delta|, and
```

```
\max\{8, 2 + \log_2 n\} < k \le c |\Gamma|.
```

Then by making at most $k! n^2$ calls to String Isomorphism problems on domains of size $\leq n/k$ and performing $k!n^{O(1)}$ computation, one can decide whether or not Δ is full and

- if Δ is full, then find a certificate K(Δ) ≤ Aut_G(s) of fullness of Δ,
- if Δ is not full, then find a certificate M(Δ) ≤ Sym(Δ) of non-fullness.

Local certificates theorem

Theorem

```
Let \Delta \subset \Gamma, k = |\Delta|, and
```

```
\max\{8, 2 + \log_2 n\} < k \le c |\Gamma|.
```

Then by making at most $k! n^2$ calls to String Isomorphism problems on domains of size $\leq n/k$ and performing $k!n^{O(1)}$ computation, one can decide whether or not Δ is full and

- if Δ is full, then find a certificate K(Δ) ≤ Aut_G(s) of fullness of Δ,
- if Δ is not full, then find a certificate M(Δ) ≤ Sym(Δ) of non-fullness.

Moreover, the families $\{(\Delta, K(\Delta)) : \Delta \text{ is full}\}$ and $\{(\Delta, M(\Delta)) : \Delta \text{ is not full}\}$ are canonical.