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The main statement

The printed version: arXiv:1512.03547v2
The video lectures: at Babai’s home page.

Theorem (Babai, 2015)

The following problems can be solved in quasipolynomial time
exp((log n)O(1)): Graph Isomorphism, String Isomorphism,
Coset Intersection.

Graph Isomorphism. Known: exp(O(
√

n log n))
(Kantor-Luks-Babai, 1983).
String Isomorphism. For strings s, s′ and a group G, find
IsoG(s, s′), where s, s′ : Ω→ Σ are strings over the alphabet Σ
and IsoG(s, s′) = {f ∈ G : sf = s′}.
Coset intersection. For G,G′ ≤ Sym(Ω) and f , f ′ ∈ Sym(Ω),
find Gf ∩G′f ′.
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The sense of “quasipolynomial”

• The algorithm splits the problem of size n into q(n)
subproblems of size cn, where 0 < c < 1.

• So for the computational complexity F (n) of the algorithm,
F (n) ≤ q(n)F (cn).
• Thus, F (n) ≤ q(n)O(log n).

To get quasipolynomial bound, the function q(n) must be
quasipolunomially bounded.
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From Graph Isomorphism to String Isomorphism

• Let Γ, Γ′ be graphs with vertices {1, . . . ,n},

• set s, s′ to be the strings on Ω = {1, . . . ,n}2 over the
alphabet Σ = {0,1} obtained from the adjacency matrices
of Γ and Γ′, respectively,
• set G to be the permutation group induced by the action of

Sym(n) on pairs, G ≤ Sym(Ω).
• Now Γ ∼= Γ′ iff IsoG(s, s′) 6= ∅.
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The Luks Algorithm: preliminaries

For K ⊂ Sym(Ω) and ∆ ⊂ Ω, set

Iso∆
K (s, s′) = {k ∈ K : s(α) = s′(αk ) for all α ∈ ∆}.

Remarks

• The String Isomorphism is to find Iso∆
K (s, s′) with K = G

and ∆ = Ω.
• In what follows, K is a right coset of G or empty, and ∆ is

G-invariant.

Proposition

Let K = Gf , where f ∈ Sym(Ω) and ∆G = ∆. Then
• Aut∆G (s) is a subgroup of G,
• Iso∆

Gf (s, s′) is either empty or a right coset of Aut∆G (s).
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The Luks Algorithm: intransitive case

Input: strings s, s′ on Ω, group G ≤ Sym(Ω), a G-invariant set
∆ ⊂ Ω, and f ∈ Sym(Ω).

Output: Iso∆
Gf (s, s′).

Step 1 (G is intransitive on ∆). Let ∆ = ∆1 ∪ ∆2, where ∆i is
G-invariant nonempty set. Then

Iso∆1 ∪∆2
Gf (s, s′) = Iso∆2

G1f1
(s, s′),

where G1f1 = Iso∆1
Gf (s, s′).

The time bound is F (n) ≤ F (n1) + F (n2), where n = n1 + n2
and ni = |∆i |.
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The Luks Algorithm: transitive case

Step 2 (G is “imprimitive” on ∆). Let ∆ = ∆1 ∪ · · · ∪ ∆m is a
G-invariant partition with the maximum possible |∆1| < |Ω| (it is
possible that |∆1| = 1 and G is primitive).

Set ψ : G→ Sym(m) to be the induced homomorphism.

N = ker(ψ), G = im(ψ), k = |G|.

Then

Iso∆
Gf (s, s′) =

k⋃
i=1

Iso∆
Ngi f (s, s′),

where {g1, . . . ,gk} is a full set of distinct representatives of the
family {ψ−1(g) : g ∈ G}. Here,

Orb(N,∆) = {∆1 . . . ,∆m} and |∆i | = n/m.

Thus, the time bound here is F (n) ≤ mkF (n/m).
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The Luks Algorithm: remarks

• If the group G is solvable, then k = mO(1) and
F (n) ≤ nO(1).

• If all non-abelian composition factors of G are bounded by
a constant, say d , then k = mg(d) and F (n) ≤ ng(d), where
g is a function.
• If k = |G| = nO(log n) for all primitive groups G occuring in

the Luks algorithm, then

F (n) ≤ n(log n)O(1)
.

In all the above cases the Luks algorithm is quasipolynomial.
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An obstacle to the Luks approach

Let A(t)
m and S(t)

m be the actions of Alt(m) and Sym(m) on
(m

t

)
.

Definition

The Cameron group G ≤ Sym(n) with parameters s, t ≥ 1 and
m ≥ max{2t ,5} is defined by the following conditions:

n =

(
m
t

)s

and (A{t}m )s ≤ G ≤ S{t}m o Sym(s)

and the action of G on the factors of Soc(G) is transitive.

Theorem (Cameron, 1981)

For n ≥ 25, if G is primitive and |G| ≥ n1+log2 n, then G is a
Cameron group.

Using CFSG were removed by Pyber (2016).
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Reduction to Johnson scheme

The Luks algorithm stops if |G| is larger than quasipolynomial,
i.e. if |G| is a Cameron group.

In fact, one can continue until G becomes a Johnson group,
i.e., the Cameron group with s = 1:

A{t}m ≤ G ≤ S{t}m

It is well known that

t⋂
i=0

Aut(Ri) = S{t}m ,

where t ≥ 2, m ≥ 2t + 1, and

Ri = {(S,T ) ∈ Ω2 : |S ∩ T | = t − i}.

with Ω =
(m

t

)
. Here J(m, t) = (Ω, {Ri}) is the Johnson scheme.
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Removing obstackles in Luks’s algorithm

Since G is a Cameron group, one can find an explicitly given
homomorphism

ϕ : G→ Alt(Γ),

where Γ is a set of cardinality m = c log2 n.

Final steps of Babai’s algorithm:

• AutG(s)ϕ ≥ Alt(Γ) and AutG(s′)ϕ ≥ Alt(Γ);
replace G by ker(ϕ).
• AutG(s)ϕ ≥ Alt(Γ) and AutG(s′)ϕ < Alt(Γ), or vice versa;

here IsoG(s, s′) = ∅.
• AutG(s)ϕ < Alt(Γ) and AutG(s′)ϕ < Alt(Γ);

replace G by Hϕ−1
, where H = 〈AutG(s)ϕ,AutG(s′)ϕ〉.
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Removing obstackles in Luks’s algorithm

Since G is a Cameron group, one can find an explicitly given
homomorphism

ϕ : G→ Alt(Γ),

where Γ is a set of cardinality m = c log2 n.
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• AutG(s)ϕ ≥ Alt(Γ) and AutG(s′)ϕ ≥ Alt(Γ);
replace G by ker(ϕ).
• AutG(s)ϕ ≥ Alt(Γ) and AutG(s′)ϕ < Alt(Γ), or vice versa;

here IsoG(s, s′) = ∅.
• AutG(s)ϕ < Alt(Γ) and AutG(s′)ϕ < Alt(Γ);

replace G by Hϕ−1
, where H = 〈AutG(s)ϕ,AutG(s′)ϕ〉.



Local certificates

A set ∆ ⊂ Γ is said to be full if

(G∆ ∩ AutG(s))ϕ ≥ Alt(∆),

where G∆ = ((Gϕ){∆})
ϕ−1

.

1. The non-fullness certificate is a group M = M(∆) ≤ Sym(∆)
such that

M 6≥ Alt(∆) and AutG(s)ϕ ≤ M.

2. The fullness certificate is a group K = K (∆) ≤ Sym(Ω) such
that

K ≤ AutG(s) and ∆Kϕ
= ∆ and (Kϕ)∆ ≥ Alt(∆).
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Local certificates theorem

Theorem

Let ∆ ⊂ Γ, k = |∆|, and

max{8,2 + log2 n} < k ≤ c|Γ|.

Then by making at most k ! n2 calls to String Isomorphism
problems on domains of size ≤ n/k and performing k !nO(1)

computation, one can decide whether or not ∆ is full and

• if ∆ is full, then find a certificate K (∆) ≤ AutG(s) of
fullness of ∆,
• if ∆ is not full, then find a certificate M(∆) ≤ Sym(∆) of

non-fullness.
Moreover, the families {(∆,K (∆)) : ∆ is full} and
{(∆,M(∆)) : ∆ is not full} are canonical.
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